Enhancing the catalytic activity of a novel GH5 cellulase GtCel5 from Gloeophyllum trabeum CBS 900.73 by site-directed mutagenesis on loop 6

نویسندگان

  • Fei Zheng
  • Tao Tu
  • Xiaoyu Wang
  • Yuan Wang
  • Rui Ma
  • Xiaoyun Su
  • Xiangming Xie
  • Bin Yao
  • Huiying Luo
چکیده

Background Cellulases of glycosyl hydrolase (GH) family 5 share a (β/α)8 TIM-barrel fold structure with eight βα loops surrounding the catalytic pocket. These loops exposed on the surface play a vital role in protein functions, primarily due to the interactions of some key amino acids with solvent and ligand molecules. It has been reported that motions of these loops facilitate substrate access and product release, and loops 6 and 7 located at the substrate entrance of the binding pocket promote proton transfer reaction at the catalytic site motions. However, the role of these flexible loops in catalysis of GH5 cellulase remains to be explored. Results In the present study, an acidic, mesophilic GH5 cellulase (with optimal activity at pH 4.0 and 70 °C), GtCel5, was identified in Gloeophyllum trabeum CBS 900.73. The specific activities of GtCel5 toward CMC-Na, barley β-glucan, and lichenan were 1117 ± 43, 6257 ± 26 and 5318 ± 54 U/mg, respectively. Multiple sequence alignment indicates that one amino acid residue at position 233 on the loop 6 shows semi-conservativeness and might contribute to the great catalytic performance. Saturation mutagenesis at position 233 was then conducted to reveal the vital roles of this position in enzyme properties. In comparison to the wild type, variants N233A and N233G showed decreased optimal temperature (- 10 °C) but increased activities (27 and 70%) and catalytic efficiencies (kcat/Km; 45 and 52%), respectively. The similar roles of position 233 in catalytic performance were also verified in the other two GH5 homologs, TeEgl5A and PoCel5, by reverse mutation. Further molecular dynamics simulations suggested that the substitution of asparagine with alanine or glycine may introduce more hydrogen bonds, increase the flexibility of loop 6, enhance the interactions between enzyme and substrate, and thus improve the substrate affinity and catalytic efficiency. Conclusion This study proposed a novel cellulase with potentials for industrial application. A specific position was identified to play key roles in cellulase-substrate interactions and enzyme catalysis. It is of great importance for understanding the binding mechanism of GH5 cellulases, and provides an effective strategy to improve the catalytic performance of cellulases.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Processive endoglucanase active in crystalline cellulose hydrolysis by the brown rot basidiomycete Gloeophyllum trabeum.

Brown rot basidiomycetes have long been thought to lack the processive cellulases that release soluble sugars from crystalline cellulose. On the other hand, these fungi remove all of the cellulose, both crystalline and amorphous, from wood when they degrade it. To resolve this discrepancy, we grew Gloeophyllum trabeum on microcrystalline cellulose (Avicel) and purified the major glycosylhydrola...

متن کامل

The pretreatment of corn stover with Gloeophyllum trabeum KU-41 for enzymatic hydrolysis

BACKGROUND Pretreatment is an essential step in the enzymatic hydrolysis of biomass for bio-ethanol production. The dominant concern in this step is how to decrease the high cost of pretreatment while achieving a high sugar yield. Fungal pretreatment of biomass was previously reported to be effective, with the advantage of having a low energy requirement and requiring no application of addition...

متن کامل

افزایش ویژگی‌های عملیاتی آنزیم اندوگلوکاناز از طریق تغییر اسیدآمینه‌ای

    Background & Aims : Ethanol produced from plant cellulose is called bioethanol and is recognized as a unique sustainable liquid fuel with powerful economic and environmental effects. In the present study we aimed at integrate a cellulase gene in to yeast genome to have the enzyme secreted out of the cell. Subsequently cellulose is depredated to glucose by the enzyme, and then it is ferment ...

متن کامل

Simultaneous saccharification and fermentation of ground corn stover for the production of fuel ethanol using Phanerochaete chrysosporium, Gloeophyllum trabeum, Saccharomyces cerevisiae, and Escherichia coli K011.

Enzymatic saccharification of corn stover using Phanerochaete chrysosporium and Gloeophyllum trabeum and subsequent fermentation of the saccharification products to ethanol by Saccharomyces cerevisiae and Escherichia coli K011 were achieved. Prior to simultaneous saccharification and fermentation (SSF) for ethanol production, solid-state fermentation was performed for four days on ground corn s...

متن کامل

Serratia marcescens B4A chitinase thermostability enhancement by S390I QuikChange site directed mutagenesis

Thermostable chitinases are useful for industrial and biotechnological applications. This paper reports the stabilization of chitinase from Serratia marcescens B4A through rational mutagenesis. Changing of Ser 390 to Ile in S. marcescens. The stabilization was enhanced through entropic stabilization by reduction of the loop length and also by increasing of the beta chain length. With this repla...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2018